

MVC Architecture
Interview Questions

for Junior iOS Developers

V1 ©copyright of 3DaysOfSwift.com

What Is MVC?

MVC stands for Model–View–Controller:

• the Model holds the data and rules

• the View shows things on screen

• and the Controller connects the two,
controlling the view based on the state of
the model

https://www.3DaysOfSwift.com

In iOS apps, 📲

View - the user taps buttons and types into text fields (input).

Controller - The Controller reacts to that input, asks the Model for data
or updates it, and then tells the View what to display.

Model - Isolated underlying system that can be freely editted, updated
and maintained without affecting the main view of the app.

The Model is the brain 🧠 of the operation and is the main underlying
system.

The basic premis of MVC is to separate the UI code from the underlying
system beneath it.

If we want our Model (the system) to run on a different device (such as
Watch) then we can write new SwiftUI files to read and interact with it.

This isolates the system, preventing changes from occuring
unintentionally or by mistake.

Interview Questions

What is MVC?
MVC stands for Model–View–Controller. It separates data and business
rules (Model), user interface (View), and coordination and user input
handling (Controller). The goal is clearer responsibilities, easier
maintenance, and simpler testing.	

What is a Model?
A Model represents data and business rules. It contains core logic and
state that should remain valid regardless of how the data is displayed
or which UI framework is used.	

What is a View?
A View is responsible for displaying information to the user. It should
contain no business logic and should only reflect the state it is given.	

What is a Controller?
A Controller coordinates between the View and the Model. It responds
to user input, requests data from the model, and updates the view
accordingly.	

What is MVVM?
MVVM stands for Model–View–ViewModel. It introduces a ViewModel
to hold presentation logic and UI-ready state, reducing the
responsibility of the view and improving testability.	

What is Layered Architecture?
Layered architecture organises code into layers such as Presentation,
Business Logic, and Data. Each layer has a clear responsibility and
communicates only with neighbouring layers.	

What are the SOLID principles?
SOLID is a set of five design principles: Single Responsibility, Open/
Closed, Liskov Substitution, Interface Segregation, and Dependency
Inversion. Together they encourage flexible, maintainable, and
testable object-oriented code.	

What is Single Responsibility?
The Single Responsibility Principle states that a type should have only
one reason to change. This keeps code easier to understand, test, and
modify safely.	

What is dependency injection?
Dependency injection is the practice of supplying dependencies from
the outside rather than creating them internally. It reduces coupling
and makes code easier to test, replace, and extend.	

What is Protocol-Oriented Programming (POP)?
Protocol-Oriented Programming is a Swift paradigm that emphasises
behaviour defined in protocols rather than inheritance. It promotes
composition, flexibility, and code reuse.	

What is Copy-on-Write in Swift?
Copy-on-Write is a performance optimisation where value types share
memory until one is mutated. Swift collections like Array and
Dictionary use this to remain efficient while preserving value
semantics.	

What is declarative vs imperative programming?
Imperative programming describes how to perform tasks step by step,
while declarative programming describes what the desired outcome
is. SwiftUI is declarative, whereas UIKit is largely imperative.	

What is the Combine framework?
Combine is Apple’s reactive framework for handling asynchronous
events and data streams. It allows developers to model values that
change over time using publishers and subscribers.	

Why is Combine useful with SwiftUI?
Combine integrates naturally with SwiftUI by driving UI updates from
reactive data streams. This results in predictable state changes and
less manual UI synchronisation.	

What is KISS?
KISS stands for Keep It Simple, Stupid. It encourages writing the
simplest solution that solves the problem, reducing complexity and
long-term maintenance costs.	

Why build code using components rather than huge files?
Small components improve readability, reuse, and testability. They
reduce cognitive load and limit the impact of changes to isolated areas
of the codebase.	

What makes code testable?
Testable code is isolated, deterministic, and free from UI or framework
dependencies. It relies on clear inputs, outputs, and injected
dependencies.	

What is separation of concerns?
Separation of concerns means each component has a single
responsibility and reason to change. This keeps systems easier to
understand and modify.	

Can architecture be over-engineered?
Yes. Architecture should match the size and complexity of the
problem. Over-engineering increases cognitive load and slows
development.	

How do architectural decisions affect long-term maintenance?
Good architecture reduces refactoring cost, improves onboarding
speed, and limits the impact of changes as systems grow.	

How do architectural decisions help teams?
Clear architecture enables parallel work, reduces merge conflicts, and
clarifies ownership across teams.	

So, Let’s Clarify..

What is MVC?
MVC stands for Model–View–Controller, and the simplest way to
remember it is: the Model holds the data and rules, the View shows
things on screen, and the Controller connects the two. In an iOS app,
the user taps buttons and types into text fields (input). The Controller
reacts to that input, asks the Model for data or updates it, and then
tells the View what to display. The benefit is that you can change how
the UI looks (View) without rewriting your core logic (Model), and you
can test the Model logic without needing the UI running.	

What is a Model?
A Model is the part of your code that represents real information and
the rules around it. For example, a User model might contain a user’s
name, email, and permissions; a ShoppingCart model might contain
items and a method to calculate the total price. A good Model does not
know anything about buttons, screens, or colours. It should be
reusable even if you changed your app from iPhone to web or to an
API, because the rules and data stay the same.	

What is a View?
A View is responsible for presenting information to the user. In UIKit,
this could be labels, buttons, table views, and custom UIViews. In
SwiftUI, the View is the struct that describes what should appear on
screen. A View should avoid business rules like ‘is this user allowed to
purchase?’—it should simply display whatever state it receives.
Keeping Views ‘dumb’ makes UI code easier to change without
breaking the rest of the system.	

What is a Controller?
A Controller is the coordinator between the View and the Model. In
UIKit, the most common Controller is a UIViewController. It listens for
user actions (like tapping a button), triggers work (like asking a
service to load data), and then updates what the user sees (like
reloading a table). Controllers often become too large if you let them
own business logic, networking, or complex state—so a good habit is
to keep controllers focused on orchestration rather than heavy logic.	

What is MVVM?
MVVM stands for Model–View–ViewModel. It still has Models and
Views, but adds a ViewModel that prepares data specifically for the
screen. Think of the ViewModel as the place where you transform raw
model data into ‘display-ready’ values, like turning a Date into a
formatted string, or combining first and last name into a full name.
This helps keep the View and ViewController simpler, and it makes the
presentation logic easier to unit test.	

What is Layered Architecture?
Layered architecture is a broader way of organising code into layers
such as Presentation (UI), Domain/Business (rules), and Data
(networking, database). The idea is that each layer has a clear job: the
UI layer handles display and user interaction, the business layer
decides what should happen, and the data layer knows how to fetch or
save information. When these layers are respected, your codebase is
easier to navigate, and you can change one layer (like swapping a
database) without rewriting everything.	

Why separate the presentation layer from the underlying
system?
The presentation layer changes frequently: designs change, layouts
change, and you might build the same product for iOS, Android, and
web. If your business rules are mixed into the UI, every UI change
risks breaking core logic. Separating them means your ‘engine’ stays
stable while the UI can evolve. It also improves testing, because you
can test business logic without needing to run a UI or simulate taps.	

Why build code using components rather than huge files?
Large files usually mean too many responsibilities in one place, which
makes bugs harder to find and changes riskier. Components are small,
focused pieces of code that do one job well—like a networking client,
a formatter, a validator, or a reusable UI component. This makes code
easier to read, easier to reuse, and easier to test. It also helps teams
work in parallel, because different developers can own different
components without constantly conflicting in the same file.	

What is a Massive View Controller and why does it happen?
A ‘Massive View Controller’ happens when a UIViewController slowly
collects responsibilities: UI code, business rules, networking calls,
parsing, navigation, and state management. It happens because it feels
convenient at first—everything is in one place—but over time the file
becomes hard to understand and risky to change. The fix is to move
work into smaller components: put networking into services, business
rules into models/use-cases, formatting into helpers, and presentation
logic into a ViewModel or similar structure.	

	Interview Questions
	What is MVC?
	What is a Model?
	What is a View?
	What is a Controller?
	What is MVVM?
	What is Layered Architecture?
	What are the SOLID principles?
	What is Single Responsibility?
	What is dependency injection?
	What is Protocol-Oriented Programming (POP)?
	What is Copy-on-Write in Swift?
	What is declarative vs imperative programming?
	What is the Combine framework?
	Why is Combine useful with SwiftUI?
	What is KISS?
	Why build code using components rather than huge files?
	What makes code testable?
	What is separation of concerns?
	Can architecture be over-engineered?
	How do architectural decisions affect long-term maintenance?
	How do architectural decisions help teams?

	So, Let’s Clarify..
	What is MVC?
	What is a Model?
	What is a View?
	What is a Controller?
	What is MVVM?
	What is Layered Architecture?
	Why separate the presentation layer from the underlying system?
	Why build code using components rather than huge files?
	What is a Massive View Controller and why does it happen?

